

### OCR B Biology A-level PAG 11 - Plant or Animal Responses

#### Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0







# Outline the procedure to investigate the effect of exercise on heart rate.







## Outline the procedure to investigate the effect of exercise on heart rate.

- 1. Measure the resting heart rate.
- 2. Do some gentle exercise, such as stepping on and off a step for 5 minutes. Immediately afterwards, measure the heart rate again.
- 3. Return to the resting position. Measure the heart rate every minute until it returns to the resting state.
- 4. Record the time taken to return to normal.
- 5. Repeat the experiment for different people (e.g. 8 people).







### How is heart rate measured?







#### How is heart rate measured?

### Place your fingers on your forearm. Count the number of beats in 15 seconds and multiply that by 4 to get the number of beats per minute.







## Which test can be used to test if the effect of exercise is significant, and why?







## Which test can be used to test if the effect of exercise is significant, and why?

### T-test, because it is comparing 2 means.







### What is phototropism?







#### What is phototropism?

# The orientation of a plant in response to light.







# What should be the controlled variables when investigating phototropism?







## What should be the controlled variables when investigating phototropism?

# Temperature, nutrient concentration, humidity, light intensity







### How should the shoots be prepared?







#### How should the shoots be prepared?

- 1: Cover tips with foil
- 2: Cover base with foil
- 3: Leave without foil







### What is geotropism?







#### What is geotropism?

# The growth of plants in response to gravity.







# Outline the procedure to investigating geotropism.







#### Outline the procedure to investigating geotropism.

- 1. Line three petri dishes with moist cotton wool.
- 2. Space out 10 cress seeds on the surface of the wool. Press them down in the wool slightly.
- 3. Put a lid on each dish. Wrap the dishes in foil to prevent light reaching the seeds. Leave the dishes where the temperature is constant and warm.
- 4. Set up the dishes so they're placed at different angles: 90, 45, 0 degrees.
- 5. Leave the seeds for 4 days.
- 6. After 4 days, unwrap each dish and note the direction of the shoot and root growth of cress seedlings. Record in a table.







### What are the controlled variables for investigating geotropism?







## What are the controlled variables for investigating geotropism?

Volume of water provided

Mass of cotton wool Number of seeds

Exposure to light Species of seed

**Temperature** 

### Time allowed for growth







### What is the function of auxin in plants?







#### What is the function of auxin in plants?

### It stimulates cell elongation for growth, and has a role in apical dominance.







### What is apical dominance?







#### What is apical dominance?

# Where the main stem inhibits the growth of lateral buds.







# Outline the procedure to investigate the effect of auxin.







## Outline the procedure to investigate the effect of auxin.

- **1.** Select 30 plants similar in height, mass and age. Count the number of side shoots growing from the main stem.
- 2. Apply a paste with auxin to 10 plants, apply a paste without auxin to another 10 plants, and leave the remaining 10 as they are.
- 3. Allow 6 days for the plants to grow.
- 4. Count the number of side shoots that have grown from the main stem.







# What are the controlled variables of this practical?







What are the controlled variables of this practical?

- Age, height, mass of plant
- Species of plant Temperature

Light intensity

Water





### What is the role of gibberellins in plants?







#### What is the role of gibberellins in plants?

# They have a role in germination and stem elongation.







# Outline the procedure to find the effect of gibberellin on plant stem elongation.







## Outline the procedure to find the effect of gibberellin on plant stem elongation.

- 1. Select 40 plants of similar height, age and mass.
- 2. Leave 20 to grow, and water the other 20 with a dilute gibberellin solution.
- 3. Leave the plants to grow for 28 days.
- 4. Measure the length of the stem of the plants every 7 days. Calculate the mean stem length.







### Describe how a respirometer works.







#### Describe how a respirometer works.

It is a chamber connected to a manometer tube with a drop of manometer fluid. As the organism in the chamber respires and uses oxygen, the pressure decreases and the liquid moves in the manometer tube.







# How is the rate of respiration calculated using data from the respirometer?







## How is the rate of respiration calculated using data from the respirometer?



### Volume of oxygen used / mass / time







# What are the controlled variables of this practical?







#### What are the controlled variables of this practical?

- Mass of organism Time
- Temperature
- Mass of soda lime

Apparatus must be airtight, and replace air between each set-up







# What does the change in volume in the manometer tube indicate?







## What does the change in volume in the manometer tube indicate?

# The volume of oxygen consumed by the organism.



